Three Counterfactual Interpretations: Identification and Applications

Hannah Chen 2023/08/02

Overview

Three Counterfactual Interpretations and Their Identification (Pearl, 1999)

Application: Spurious correlation in NLP

Are All Spurious Features in Natural Language A like? An Analysis through a Causal Lens (Joshi, 2022)

Standard Counterfactual Definition

Causation: event E would not have occurred if it weren't for the cause C

For example, A particular exposure \rightarrow Disease

"Probability that disease would not have occurred in the absence of exposure, given that disease and exposure did in fact occur"

It captures the notion of "**necessary** cause"

Three Counterfactual Intepretations

- 1) Necessary cause
- 2) Sufficient cause
- 3) Necessary and sufficient cause

Necessity and Sufficiency

Necessary condition

Air is necessary for human life

"John is unmarried" is necessary for "John is a bachelor"

"X is a rectangle" is necessary for "X is a square"

Sufficient condition

Lighting is sufficient for thunder

"John is king" is sufficient to know "John is a male"

"X is a square" is sufficient for "X is a rectangle"

Necessity and Sufficiency (Wiki)

The Concepts of Necessary Conditions and Sufficient Conditions (Norman Swartz) 5

Necessity and Sufficiency

Propositional Logic

If X then Y (X \rightarrow Y),

- Y is necessary for X X is sufficient for Y 1)
- 2)

Causal Explanation

X is a necessary cause of Y

↔ Y is a sufficient cause of X

For example:

Lighting is a **sufficient condition** for thunder Thunder is a **necessary condition** for lightning

 \rightarrow Not causal, \therefore lightning causes thunder

Lighting is a **sufficient cause** for thunder Thunder is **not** a **necessary cause** for lighting

Why do we care?

Necessary causation \rightarrow various factors would qualify as explanations

 $\mathsf{Oxygen} \to \mathsf{fire}$

Singular-event considerations Necessary but not sufficient

Sufficient causation \rightarrow we lose important specific information

Skipping the final exam \rightarrow failing the course

Generic tendencies Sufficient but not necessary

Other causes: poor attendance, procrastination, teaching style

The distinction between the two is imporant, especially when generating explanations for AI systems.

Definitions

Notation: Let X and Y be two binary variables in a causal model

x: X = true, y: Y = truex': X = false, y': Y = falseU: exogenous, V: endogenous, including X and Y

 $Y_x(u)$: potential response of Y to do(X = x)

Necessary and Sufficient Cause

Generally, not identifiable

Definitions

Probability of necessity (PN)

Probability that y would not have occured in the absence of x given that x and y did in fact occur

$$\mathsf{PN} \triangleq P(Y_{x'} = \mathsf{false} \,|\, X = \mathsf{true}, Y = \mathsf{true}) \triangleq P(y'_{x'} \,|\, x, y)$$

Probability of sufficiency (PS)

Probability that setting x would produce y given that x and y are in fact absent

$$\mathsf{PS} \triangleq P(Y_x = \mathsf{true} \,|\, X = \mathsf{false}, Y = \mathsf{false}) \triangleq P(y_x \,|\, x', y')$$

Probability of necessity and sufficiency (PNS)

Probability that y would respond to x in both ways

$$PNS \triangleq P(y_x, y'_{x'})$$

Example: Betting against a Fair Coin Toss

x: "bet on heads", y: "win a dollar", u: "the coin turned up heads"Q: Was the bet a necessary cause (sufficient cause, or both) for winning?

Functional relationship: $y = (x \land u) \lor (x' \land u')$

 $PN = P(y'_{x'} | x, y) = P(y'_{x'} | u) = 1 \qquad \because x \land y \Rightarrow u \text{ and } Y_{x'}(u) = \text{false}$ $PS = P(y_x | x', y') = P(y_x | u) = 1 \qquad \because x' \land y' \Rightarrow u \text{ and } Y_x(u) = \text{true}$

PNS = $P(y_x, y'_{x'})$ = $P(y_x, y'_{x'} | u) P(u) + P(y_x, y'_{x'} | u') P(u')$ = $1\frac{1}{2} + 0\frac{1}{2} = \frac{1}{2}$.

Example: Betting against a Fair Coin

x: "bet on heads", y: "win a dollar", u: "the coin turned up heads"

Q: Was the bet a necessary cause (sufficient cause, or both) for winning?

Functional relationship: $y = (x \land u) \lor (x' \land u') \rightarrow \text{To compute counterfactuals we need to know this}$

 $PN = P(y'_{x'} | x, y) = P(y'_{x'} | u) = 1 \quad \rightarrow \text{ The bet was 100\% necessary for the win}$ $PS = P(y_x | x', y') = P(y_x | u) = 1 \quad \rightarrow \text{ The bet was 100\% sufficient for the win}$

PNS = $P(y_x, y'_{x'})$ = $P(y_x, y'_{x'} | u) P(u) + P(y_x, y'_{x'} | u') P(u')$ = $1\frac{1}{2} + 0\frac{1}{2} = \frac{1}{2}$.

Betting heads has 50% chance of being necessary and sufficient cause of winning

Spurious Features in NLP

Spurious features: undesirable feature-label correlation, features model should not rely on

(Joshi, 2022): Features can be spurious for different reasons

Irrelevant featuresSpeilberg's new film is brilliant. \longrightarrow Positive_____'s new film is brilliant. \longrightarrow Positive

Necessary features *The differential compounds to a hefty sum over time.* The differential will not grow \longrightarrow Contradiction The differential will ____ grow \longrightarrow ?

Table 1: Difference between two spurious features: (a) the director name can be replaced without affecting the sentiment prediction; (b) the negation word is necessary as it is not possible to determine the label without it.

Most work focus on <u>necessary but</u> <u>not sufficient</u> spurious features

Causal Models for Text Classification

X=(X₁,X₂,...X_n): sequence of input words/features
Y: sentiment label
C: common cause of the input

(a) Data generating model.

(b) Type 1 dependence.

Y

Non-causal association

Titanic

is

great

C

"Titanic" and Y are dependent because of confounder C

(c) Type 2 dependence.

Causal association

"not" and Y are dependent

Causal Models for Text Classification

X=(X₁,X₂,...X_n): sequence of input words/features Y: sentiment label

C: common cause of the input

(a) Data generating model.

Spurious correlation

"Titanic" and Y are dependent because of confounder C

"not" and Y are dependent

Estimating PN & PS of a Feature

PN, PS are *context dependent*

X_{-i}: context without X_i

PN: probability that y would change if feature X_i were set to a different value

$$PN(X_i = x_i, Y = y \mid X_{-i} = x_{-i}) \triangleq p(Y(X_i \neq x_i) \neq y \mid X_i = x_i, X_{-i} = x_{-i}, Y = y)$$

Intervention: text infilling with masked LMs, e.g., Titanic \rightarrow Ip Man

PS: probability that setting X_i to x_i would produce y given x_i is absent

 $PS(X_i = x_i, Y = y \mid X_{-i} = x_{-i}) \triangleq p(Y(\underline{X_i = x_i}) = y \mid X_i \neq x_i, X_{-i} = x_{-i}, Y \neq y)$

Intervention, e.g., adding negation

Estimating PN & PS of a Feature

Average effect of a feature: marginalize over the contexts

$$\mathbf{PN}(x_i, y) \triangleq \int \mathbf{PN}(x_i, y \mid X_{-i}) p(X_{-i} \mid x_i, y) \, \mathrm{d}X_{-i}$$

Spuriousness of a feature: $1 - PS(x_i, y)$

Spurious feature: if spuriousness > 0

Non-spurious feature: if sufficient in any context (high PS)

Feature Categorization

Calculating PN & PS requires knowing how the label would change when removing or adding a feature

P: The doctor was paid by the actor.H0: The actor paid the doctor.	L0: Entailment
H1: The teacher paid the doctor.	L1: Neutral
H2: The actor liked the doctor.	L2: Neutral
H3 : The actor paid the guard.	L3: Neutral
H4: An actor paid the doctor.	L4: Entailment

High word overlap has high PN (but low PS) to entailment

Changing overlapped words is likely to change the label Unless replaced with a synonym

Implications on Model Robustness

Is relying on spurious features always bad?

Prior work suggested models shouldn't rely on a single feature in any way

Model prediction should depend on high PN spurious features

It's only bad when model over relies on them and ignores other necessary features

How to evaluate model robustness?

Common way: perturb and see if prediction is invariant \rightarrow only tells us if the feature is necessary

This only works on testing robustness to low PN spurious features

Robustness to high PN spurious features: create test examples with same spurious feature but different label (e.g., HANS dataset, label flipping adversarial attacks)

Implications on Learning Methods

Debiasing via subsampling

Lexical Overlap: high overlap (in-distribution) low overlap (OOD)

Punctuation ("!!"): with punctuations (in-distribution) without punctuations (OOD)

Implications on Learning Methods

Debiasing via INLP (Ravgogel, 2020) Removing spurious feature from learned representations

High PN spurious features: harder to remove, and hurts task performance