Estimation of Causal Peer Influence effects

Toulis, Kao

Proceedings of the 30th International Conference on Machine Learning (2013)

<u>Link</u>

Introduction

- Interference among units:
 - When a treatment on a unit has an effect on the response of another.
- Also called spillover effects in economics.
- In the context of humans and their peers, called *peer influence effects*.
- How to do causal inference in the presence of interference?

Related work

- Most works (at the time) treat interference as a nuisance.
 Especially, in the estimation of average treatment effect.
- In this work, they estimate the peer influence effect itself.
- Hudgens & Halloran (2008): estimating causal effect of vaccination under interference by comparing *reference groups*.
- Peer effects have been researched in the absence of a causal model (Shah & Zaman, 2011).

Why estimate peer influence effects?

- Take the case study in Bakshy et al., 2012:
 - Facebook users were shown ads with and without their friends' product affiliation.
 - How much causal effect does peer endorsement have?
- Risks of ignoring peer influence effects (Sobel, 2006):
 - Social program for financing poor households to move to better neighborhoods.
 - Ignoring interference leads to erroneous conclusions about effectiveness of the program.

The potential outcomes model

-	Unit	"Ideal" world		Real world	
-		$Z_i = 0$	$Z_i = 1$	$Z_i = 0$	$Z_i = 1$
-	1	$Y_1(0)$	$Y_{1}(1)$	$Y_1(0)$?
	2	$Y_2(0)$	$Y_2(1)$?	$Y_{2}(1)$

Table 1. Causal inference as a missing data problem under the Rubin model

If we observed all possible outcomes,

$$\mu = (1/2) \cdot [Y_1(1) + Y_2(1) - Y_1(0) - Y_2(0)]$$

In the real world, we only observe one outcome for a unit. We may randomize the treatment assignment and estimate the causal effect by $Y_2(1) - Y_1(0)$.

The SUTVA assumption

- Stable Unit Treatment Value assumption:
 - The outcome of individual *i* is a function of only its treatment Z_i . $Y_i(\mathbf{Z}) = Y_i(Z_i)$.
- However, in the presence of interference, this assumption is violated.
- This work relaxes the assumption to:
 - The outcome of i is a function of its own treatment Z_i as well as those of its neighbors.

$$Y_i(\mathbf{Z}) = Y_i(Z_i, \mathbf{Z}_{N_i})$$

A few definitions

- If $Z_i = 1$, then *i* is said to have *primary* effects.
- If *i* has at least one neighbor being treated, then *i* is said to have *peer influence* effects.
- A unit is *k*-exposed if exactly k of its neighbors are being treated. Z in this case is a *k*-level assignment.
- Let D_i be the set of all assignments Z_{N_i} such that *i* is *k*-exposed.
- A unit is *non-exposed* if $Z_i = 0$ and $Z_{N_i} = 0$.
- Let V_k be the set of all nodes with at least k neighbors.
- $Z(N_i; k)$ be the set of assignments on N_i where exactly k neighbors of i get treated. Size: $C_k^{n_i}$

Causal estimands

The primary treatment effect is defined

$$\xi \equiv rac{1}{N}\sum_i Y_i(1, \mathbf{Z}_{\mathcal{N}_i} = \mathbf{0}) - Y_i(\mathbf{0})$$

The k-level peer influence effect is defined as

$$\delta_k \equiv \frac{1}{|V_k|} \sum_{i \in V_k} \left[\binom{n_i}{k}^{-1} \sum_{\mathbf{z} \in \mathbf{Z}(\mathcal{N}_i;k)} Y_i(0, \mathbf{z}) - Y_i(\mathbf{0}) \right]$$

How to estimate these?

- The primary effect ξ is estimated in the usual way: a randomized experiment.
- However, estimating δ_k is more involved.
 - Any randomization of the treatment vector must $Z_i = 0$ for all $i \in V_k$.
 - The randomization must happen only within their neighborhoods.

A simple sequential design

Algorithm 1 Estimation of δ_k : Simple Sequential Randomization $SSR(G, \mathbb{Z})$ Input: G network, \mathbb{Z} current treatment vector Output: \mathbb{Z} treatment vector (in-place)

1: while
$$i \leftarrow \text{sample}\{i : i \in V_k \& \mathbf{s}(\mathbf{Z}_{\mathcal{N}_i}) \leq k\}$$
 do
2: $T_i = \{j \in \mathcal{N}_i : Z_j \neq \text{NA}\}$
3: $\mathbf{W} \leftarrow \text{sample}\{\mathbf{W} : \mathbf{W} \in \mathcal{D}_i \& \mathbf{W}_{T_i} = \mathbf{Z}_{T_i}\}$
4: $\mathbf{Z}_{\mathcal{N}_i} \leftarrow \text{sample}\{\mathbf{W}, \mathbf{0}\}$
5: $Z_i \leftarrow 0$
6: $V_k \leftarrow V_k \setminus \{i\}$
7: end while

A few takeaways

- The paper has a lot of more results.
 - A model-based approach where the response function Y_i is a linear function of units and their neighbors.
 - How to model network uncertainty?
 - Performance analysis and comparisons.