Bayesian Networks & Causal Graphs

Presenter: Hannah Chen 2023/06/28

Overview

Bayesian Networks

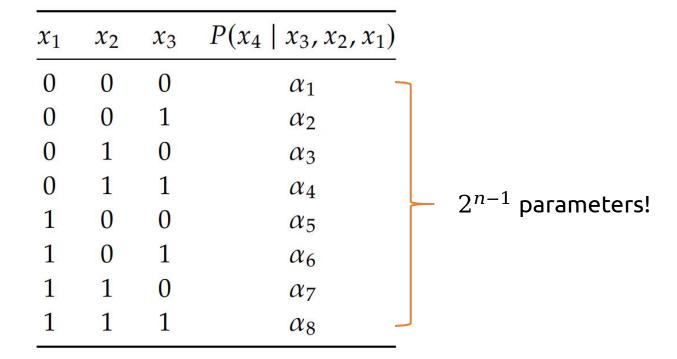
Causal Axioms

Markov Equivalence

Statistical Modeling

$$P(x_1, x_2, ..., x_n) = P(x_1) \prod_{i=2}^n P(x_i \mid x_1, ..., x_{i-1})$$
 (chain rule)

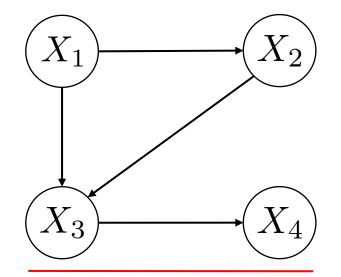
 $P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2 \mid x_1)P(x_3 \mid x_1, x_2)P(x_4 \mid x_1, x_2, x_3)$



Bayesian Networks

Local Markov assumption: Given its parents in DAG, a node X is independent of all of its non-descendants.

$$P(x_1, x_2, ..., x_n) = \prod_i P(x_i | pa_i)$$

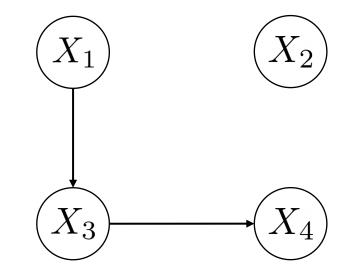


Bayesian $P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)P(x_4 | x_3)$ Statistical $P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)P(x_4 | x_1, x_2, x_3)$

Bayesian Networks

Local Markov assumption: Given its parents in DAG, a node X is independent of all of its non-descendants.

$$P(x_1, x_2, ..., x_n) = \prod_i P(x_i | pa_i)$$

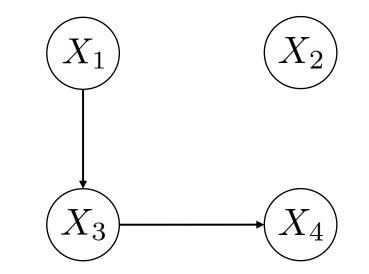


$$P(x_1, x_2, x_3, x_4) = ?$$

Bayesian Networks

Local Markov assumption: Given its parents in DAG, a node X is independent of all of its non-descendants.

$$P(x_1, x_2, ..., x_n) = \prod_i P(x_i | pa_i)$$



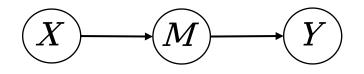
$$P(x_1, x_2, x_3, x_4) = P(x_1)P(x_2)P(x_3 | x_1)P(x_4 | x_3)$$

Global Markov Assumption

Given that P is Markov with respect to G (local Markov),

$$X \perp\!\!\!\perp_G Y \mid Z \Rightarrow X \perp\!\!\!\perp_P Y \mid Z$$

d-separation in graph G implies conditional independence in distribution P

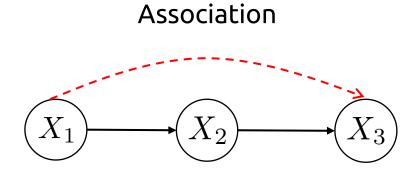


 $Z = \{M\}$

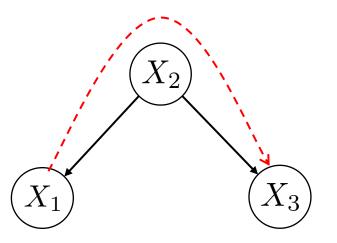
Local Markov \iff Global Markov

Markov assumption

Flow of Association: Chains and Forks

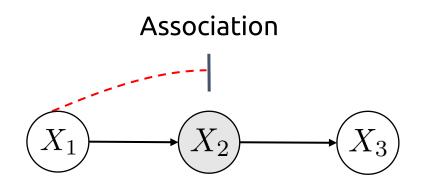


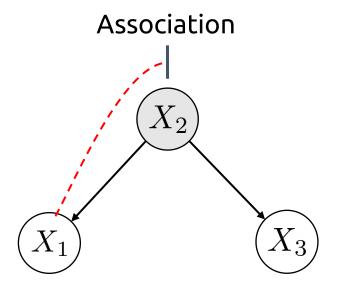
Association



 $X_1 \not\!\!\perp X_3$

Flow of Association: Chains and Forks





 $X_1 \bot\!\!\!\perp X_3 \mid \! X_2$

Proof: Conditional Independence in Chains

Show:
$$P(x_1, x_3 | x_2) = P(x_1 | x_2) P(x_3 | x_2)$$

 $\equiv P(x_3 | x_1, x_2) = P(x_3 | x_2)$

$$X_1 \perp X_3 | X_2$$

$$X_1 \perp X_3 | X_2$$

1. Bayesian factorization $P(x_1, x_2, x_3) = P(x_1)P(x_2 \mid x_1)P(x_3 \mid x_2)$

2. Bayes' rule
$$P(x_1, x_3 \mid x_2) = \frac{P(x_1, x_2, x_3)}{P(x_2)} = \frac{P(x_1)P(x_2 \mid x_1)P(x_3 \mid x_2)}{P(x_2)}$$

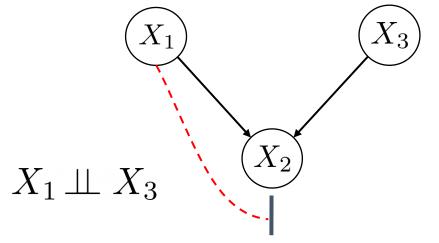
3. Bayes' rule again
$$P(x_1, x_3 \mid x_2) = \frac{P(x_1, x_2)}{P(x_2)}P(x_3 \mid x_2) = P(x_1 \mid x_2)P(x_3 \mid x_2)$$

Flow of Association: Immoralities

Show: $P(x_1, x_3) = P(x_1)P(x_3)$

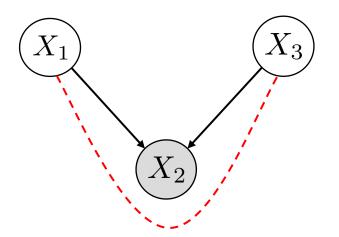
$$P(x_1, x_3) = \sum_{x_2} P(x_1, x_2, x_3)$$

= $\sum_{x_2} P(x_1) P(x_3) P(x_2 | x_1, x_3)$ (Bayesian factorization)
= $P(x_1) P(x_3) \sum_{x_2} P(x_2 | x_1, x_3)$
= $P(x_1) P(x_3)$



Flow of Association: Immoralities

Conditional dependence $X_1 \not\!\!\perp X_3 \mid X_2$



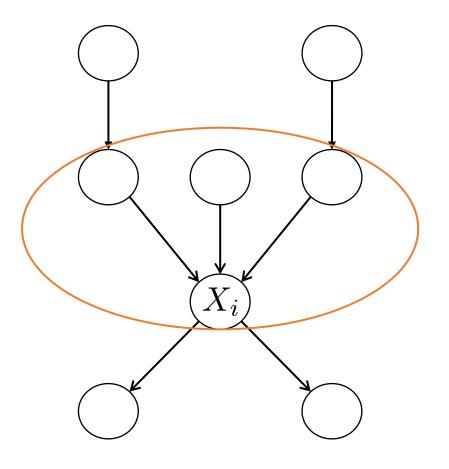
 $P(x_1, x_3 | x_2) \propto P(x_2 | x_1, x_3) P(x_1) P(x_3)$ $\neq P(x_1 | x_2) P(x_3 | x_2)$

Intervention as Variables

Causal mechanism of X_i : $P(x_i | pa_i)$

Causal mechanism are modular Interventions are local

$$do(X_i = x_i)$$

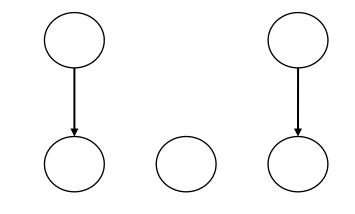


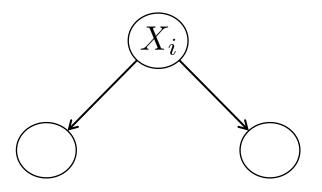
Intervention as Variables

Causal mechanism of X_i : $P(x_i | pa_i)$

Causal mechanism are modular Interventions are local

$$do(X_i = x_i)$$





Modularity

If we intervene on node X_i , then only $P(x_i|pa_i)$ changes. All other $P(x_j|pa_j)$ where $i \neq j$ remain unchanged.

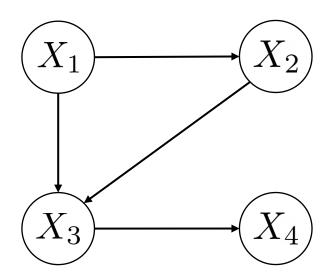
More formally,

If we intervene on a set of nodes $S \subseteq [n]$, setting them to constants, then for all i, we have the following:

- 1. If $i \notin S$, then $P(x_i | pa_i)$ remains unchanged.
- 2. If $i \in S$, then $P(x_i | pa_i) = 1$ if $\underline{x_i}$ is the value that X_i was set to by the intervention; otherwise, $P(x_i | pa_i) = 0$. consistent with the intervention

Modularity: Manipulated Graph

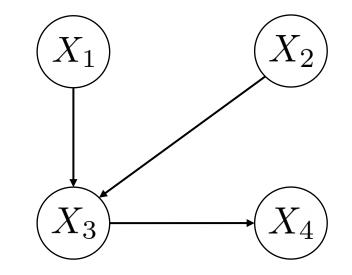
 $do(X_2 = x_2)$



Observational distribution

 $P(x_1, x_2, x_3, x_4)$

$$= P(x_1)P(x_2 \mid x_1)P(x_3 \mid x_1, x_2)P(x_4 \mid x_3)$$



Interventional distribution $P(x_1, x_2, x_3, x_4 \mid do(X_2 = x_2))$ $= P(x_1) \cdot 1 \cdot P(x_3 \mid x_1, x_2) P(x_4 \mid x_3)$ (Truncated factorization)

Interventions as Truncated Factorization

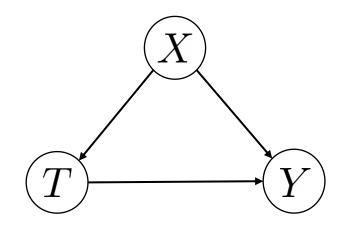
If x is consistent with the intervention (modularity):

$$P(x_1, ..., x_n \mid do(S = s)) = \prod_{i:x_i \notin S} P(x_i \mid pa_i)$$

Otherwise,

$$P(x_1, ..., x_n \mid do(S = s)) = 0$$

Identification via Truncated Factorization



Identify $P(y \mid do(t))$

Bayesian factorization P(y, t, x) = P(x)P(t | x)P(y | t, x)Truncated factorization P(y, x | do(t)) = P(x)P(y | t, x)Marginalization $P(y | do(t)) = \sum_{x} P(y | t, x)P(x) \longrightarrow$ Backdoor adjustment!

Causal Axioms

Connecting probabilities with causal graphs:

- 1. Markov Condition
- 2. Causal Minimality
- 3. Faithfulness Condition

MInimality Assumption

No subgraph of G also satisfies the Markov condition with respect to P

Markov assumption permits:

 \Rightarrow Removing any edges from G, P would not be Markov with respect to G with the removed edges

Faithfulness Assumption

Markov Assumption: $X \perp\!\!\!\!\perp_G Y \mid Z \Rightarrow X \perp\!\!\!\!\perp_P Y \mid Z$

Causal graph → Data

Causal graph ← Data

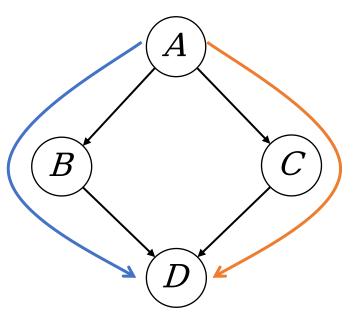
Faithfulness: $X \perp\!\!\!\perp_G Y \mid Z \Leftarrow X \perp\!\!\!\perp_P Y \mid Z$

Violation of Faithfulness

Faithfulness: $X \perp\!\!\!\perp_G Y \mid Z \Leftarrow X \perp\!\!\!\perp_P Y \mid Z$

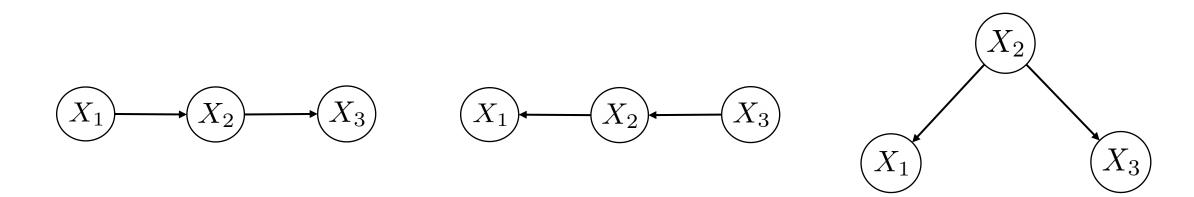
$A \! \perp \!\!\!\perp D$

but A and D are not d-separated



Two paths cancel each other

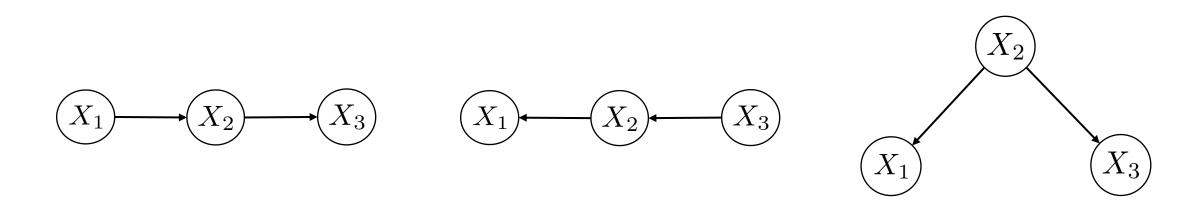
Markov Equivalence



They're all $P(x_1, x_2, x_3)$

But different Markov factorization

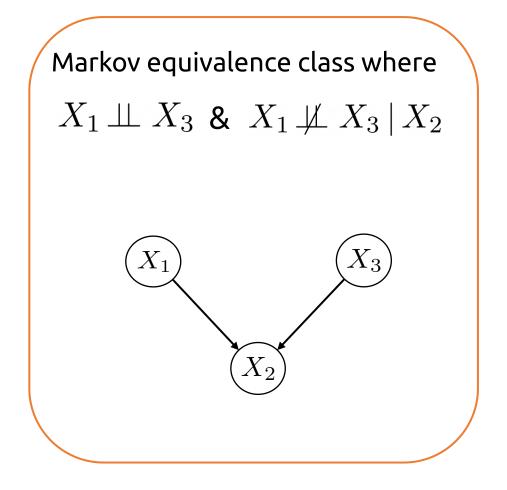
Markov Equivalence

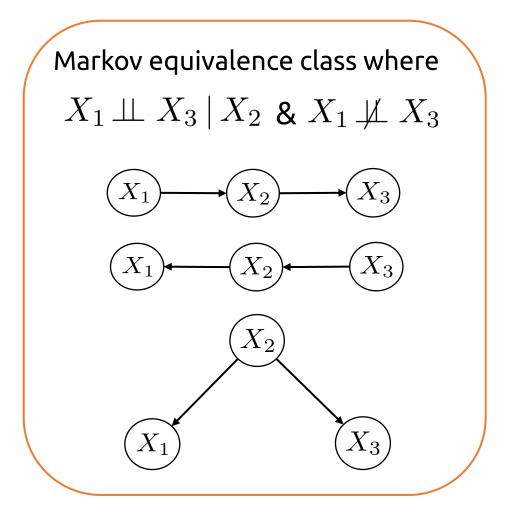


Markov: $X_1 \perp\!\!\!\perp X_3 \mid X_2$ Minimality: $X_1 \perp\!\!\!\perp X_2$ & $X_2 \perp\!\!\!\perp X_3$ Faithfulness: $X_1 \perp\!\!\!\perp X_3$

Markov equivalence class: A set of DAGs that encode the same set of conditional independencies

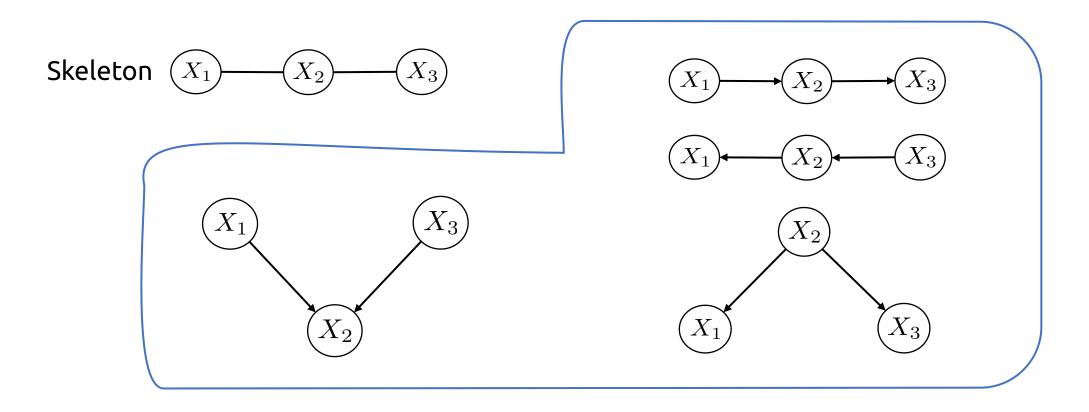
Immoralities are Different





Markov Equivalence

[Verma & Pearl, 1991] Two DAGs are Markov equivalent if and only if they have the same **skeleton** and the same **immoralities** (v-structures).



Markov Equivalence

Useful for causal discovery

[Verma & Pearl, 1991] Two DAGs are Markov equivalent if and only if they have the same **skeleton** and the same **immoralities** (v-structures).

