
Presenter: Hannah Chen

2023/06/28

Causal Learning Reading Group, Summer 2023



Bayesian Networks

Causal Axioms

Markov Equivalence
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(chain rule)

2�−1 parameters!
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Statistical

Bayesian

Local Markov assumption: Given its parents in DAG, a 
node X is independent of all of its non-descendants. 
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Local Markov assumption: Given its parents in DAG, a 
node X is independent of all of its non-descendants. 
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d-separation in graph G

Given that P is Markov with respect to G (local Markov),

Local Markov Global Markov

Markov assumption

X M Y

implies conditional independence in distribution P
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Association

Association
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Association

Association
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1. Bayesian factorization

2. Bayes’ rule

3. Bayes’ rule again

Show:
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(Bayesian factorization)

Show:

1
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Conditional dependence



Causal mechanism are modular

Interventions are local
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Causal mechanism of        : 
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Causal mechanism are modular

Interventions are local

Causal mechanism of        : 



If we intervene on node ��, then only �(��|푝��) changes. All other �(��|푝��) where � ≠
� remain unchanged.
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consistent with the intervention

More formally,
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Observational distribution Interventional distribution

(Truncated factorization)
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If x is consistent with the intervention (modularity):

Otherwise,
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Identify

Bayesian factorization

Truncated factorization

Marginalization Backdoor 
adjustment!



Connecting probabilities with causal graphs:

1. Markov Condition

2. Causal Minimality

3. Faithfulness Condition

19
Spirtes et al. (1999), Causation, Prediction, and Search”, Chapter 3
Peters et al. (2017), Elements of Causal Inference: Foundations and Learning Algorithms, Section 6.5



No subgraph of G also satisfies the Markov condition with respect to P
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X Y X Y

Markov assumption permits:

Removing any edges from G, P would not be Markov with respect to G with the removed edges



Data
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Markov Assumption:

Faithfulness:

Causal graph

DataCausal graph
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Faithfulness:

B

A

C

D

but A and D are not d-separated

Two paths cancel 
each other
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They’re all

But different Markov factorization
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Markov equivalence class: 

A set of DAGs that encode the same 

set of conditional independencies

Markov:

Minimality:

Faithfulness:

&
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Markov equivalence class where

&

Markov equivalence class where

&
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[Verma & Pearl, 1991] Two DAGs are Markov equivalent if and only if they have the 
same skeleton and the same immoralities (v-structures).

Skeleton
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[Verma & Pearl, 1991] Two DAGs are Markov equivalent if and only if they have the 
same skeleton and the same immoralities (v-structures).

Skeleton

Immorality

Useful for causal discovery


