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Statistical Modeling
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Bayesian Networks

Local Markov assumption: Given its parents in DAG, a
node X is independent of all of its non-descendants.

P(x1,%2, ..., Tn) = HP(% | pa;)

Bayesian P(x1,%2,23,24) = P(x1)P(xo | x1)P(x3 |21, 22)P(24 | T3)

Statistical P(x1,x2,23,24) = P(x1)P(xs | x1)P(x3| 21, 22)P(x4 | 21,22, T3)
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Bayesian Networks

Local Markov assumption: Given its parents in DAG, a
node X is independent of all of its non-descendants.
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P(z1,x9,23,24) = P(x1)P(22)P(x3 | 21)P(24 | 23)



Global Markov Assumption

Given that P is Markov with respect to G (local Markov),

XUegY|Z=>XUpY|Z

d-separation in graph G implies conditional independence in distribution P

W Local Markov <— Global Markov

7 {M} Markov assumption




Flow of Association: Chains and Forks
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Flow of Association: Chains and Forks
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Proof: Conditional Independence in Chains

Show: P(ZEl,ZEg ‘392) — P(LEl ‘ZEQ)P(ZE:} ‘392) e

= P(x3|x1,22) = P(73 ] 22) C CXZ @

1. Bayesian factorization P(x1,%2,23) = P(x1)P(x2|x1)P(xs | x2)

P(xy,22,2x
2. Bayes' rule P(xy, 23| 12) = <;(xz) 3) _ P(@"l)P(xlzj\(?iP(xs | 22)
2
P
3.Bayes' ruleagain  Plry.zs | ) = LT pou oy ey ) Plas | 1)

P(z2)
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Flow of Association: Immoralities

Show: P(z1,x3) = P(x1)P(x3)

= ZP (x1)P(x3)P(x2|x1,23)  (Bayesian factorization)
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— P(21)P(z3) S P(ay | 21, 23)

L2

= P(x1)P(z3)




Flow of Association: Immoralities

Conditional dependence X7 I X3 |Xo

P(Cli'l,iljg ‘5172) X P(.CCQ ‘ZEl,Qﬁg)P(QZl)P(Qﬁg)

# P(x1 | z2)P(x3 | x2)



Intervention as Variables

Causal mechanism of X;: P(x; | pa;)

Causal mechanism are modular
Interventions are local

Q\
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Intervention as Variables

Causal mechanism of X;: P(x; | pa;)

Causal mechanism are modular
Interventions are local
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Modularity

IF we intervene on node X, then only P(x;|pa;) changes. All other P(x |pa;) wherei #
j remain unchanged.

More formally,
If we intervene on a set of nodes S C [n], setting them to constants, then
for all 1, we have the following:
1. If i ¢ S, then P(x; | pa;) remains unchanged.

2. If i € S, then P(z; | pa;) = 11f z; 1s the value that X; was set to by the
intervention; otherwise, P(z; | pa;) = 0. consistent with the intervention
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Modularity: Manipulated Graph

Observational distribution
P(J]l,ZC’Q,ZC’g, 33'4)

= P(x1>P($2 ‘xl)P(.CCg ‘ xl,xz)P(:c4 ‘333)

Interventional distribution
P($1,$2,$3,$4 ‘ dO(XZ — ZC2>)
= P(x1)-1- P(axs |21, 22) P24 | 23)

(Truncated factorization)



Interventions as Truncated Factorization

If X is consistent with the intervention (modularity):

P(xy,...;xn | do(S H P(x; | pa;)
1:x; €S

Otherwise,

P(xy,...,x,|do(S=s))=0



ldentification via Truncated Factorization

Identify P(y | do(t))

Bayesian factorization P(y,t,x) = P(x)P(t|z)P(y|t, x)
Truncated factorization P(y,x | do(t)) = P(x)P(y|t, x)

Marginalization  P(y | do(t)) = Z P(y|t,z)P(x)

X

Backdoor
adjustment!
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Causal Axioms

Connecting probabilities with causal graphs:
1. Markov Condition
2. Causal Minimality

3. Faithfulness Condition

Spirtes et al. (1999), Causation, Prediction, and Search”, Chapter 3
Peters et al. (2017), Elements of Causal Inference: Foundations and Learning Algorithms, Section 6.5 19



MInimality Assumption

No subgraph of G also satisfies the Markov condition with respect to P

Markov assumption permits:

O ORRO

P(z,y) = P(x)P(y | ) P(z,y) = P(x)P(y)

—> Removing any edges from G, P would not be Markov with respect to G with the removed edges
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Faithfulness Assumption

Markov Assumption: X lgY |Z=X1UpY|Z

Causal graph > Data

Causal graph < Data

Faithfulness: X ll g Y |Z < X 1lpY |Z



Violation of Faithfulness

Faithfulness: X Il oY |Z <= X 1lpY |Z

All D
but A and D are not d-separated

Two paths cancel
each other



Markov Equivalence

@ e

They're all P(x1,x2,23)

But different Markov Factorization



Markov Equivalence

@ o

Markov: X4 1l X3 ‘ X9

Markov equivalence class:

Minimality: X; ) Xo & X9 U X3 A set of DAGs that encode the same
set of conditional independencies
Faithfulness: X1 [/ X3



Immoralities are Different

Markov equivalence class where

X11_|_X3‘X2 &XlﬂXg

& o

Markov equivalence class where

X1l X5 & X1 U X3 Xo



Markov Equivalence

[Verma & Pearl, 1991] Two DAGs are Markov equivalent if and only if they have the
same skeleton and the same immoralities (v-structures).
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Markov Equiva lence Useful for causal discovery

[Verma & Pearl, 1991] Two DAGs are Markov equivalent if and only if they have the
same skeleton and the same immoralities (v-structures).

Skeleton (E—@— )

(X (Xs) %)

L ® @ SF,

Immorality




